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Fig. 1. We introduce a conditional video distillation method for real-time co-speech video generation that leverages human pose conditioning for input-aware
sparse attention and distillation loss. Our student model achieves 25.3 FPS, a 13.1X speedup over its teacher model [Zhang et al. 2025], while preserving visual
quality. Our method significantly improves motion coherence and lip synchronization over a leading few-step causal student model [Yin et al. 2025], while
reducing common visual degradation in the speaker’s face and hands (see yellow box).

Diffusion models can synthesize realistic co-speech video from audio for
various applications, such as video creation and virtual agents. However,
existing diffusion-based methods are slow due to numerous denoising steps
and costly attention mechanisms, preventing real-time deployment. In this
work, we distill a many-step diffusion video model into a few-step student
model. Unfortunately, directly applying recent diffusion distillation methods
degrades video quality and falls short of real-time performance. To address
these issues, our new video distillation method leverages input human pose
conditioning for both attention and loss functions. We first propose using
accurate correspondence between input human pose keypoints to guide
attention to relevant regions, such as the speaker’s face, hands, and upper
body. This input-aware sparse attention reduces redundant computations
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and strengthens temporal correspondences of body parts, improving infer-
ence efficiency and motion coherence. To further enhance visual quality, we
introduce an input-aware distillation loss that improves lip synchronization
and hand motion realism. By integrating our input-aware sparse attention
and distillation loss, our method achieves real-time performance with im-
proved visual quality compared to recent audio-driven and input-driven
methods. We also conduct extensive experiments showing the effectiveness
of our algorithmic design choices.
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1 Introduction

Co-speech video generation, which synthesizes human videos from
audio, has enabled diverse applications such as creating realistic
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virtual agents, producing educational video content, and enhancing
telepresence. Diffusion models [Ho et al. 2020], with attention mech-
anisms, excel at this task, producing highly realistic and coherent
videos. However, diffusion models are extremely slow for video
generation, due to the numerous denoising steps and the quadratic
costs associated with full attention over many frames and tokens,
making real-time deployment difficult.

One common strategy to reduce computational costs is network
distillation [Hinton et al. 2015], where a slow, pre-trained “teacher”
video model is distilled into a faster “student” model. Unfortunately,
as Figure 1b shows, directly applying recent text-to-video distilla-
tion methods, such as CausVid [Yin et al. 2025], to the co-speech
generation task proves insufficient. Such methods tend to degrade
the video quality, particularly in crucial areas like the speaker’s face
and hand regions, which are vital for natural co-speech gestures.
Moreover, the speedup achieved still falls short of the demands for
real-time performance.

To address these limitations, we propose a conditional video distil-
lation method for fast co-speech generation with the following key
insight. Unlike general text-to-video distillation, co-speech genera-
tion benefits from readily available input human pose conditioning.
We leverage this pose information through an input-aware sparse at-
tention mechanism, which significantly reduces computation while
preserving video quality. Pose keypoints allow us to identify key
regions (e.g., the speaker’s face, hands, upper body). This enables
our sparse attention to selectively focus on tokens within these
regions and their corresponding areas in similar frames, rather
than performing dense, costly full attention across the entire video
frames. Beyond guiding attention, pose information also pinpoints
critical regions, such as the face and hands. This also enables us
to design distillation losses that prioritize perceptual quality and
accuracy in these areas, crucial for convincing co-speech video.
Building on these insights, our method incorporates input-aware
sparse attention and distillation loss into an efficient video distilla-
tion method. The sparse attention mechanism focuses computation
on pose-defined relevant regions, which reduces redundancy and
improves motion coherence. The input-aware distillation loss fur-
ther enhances visual quality, particularly lip synchronization and
hand motion realism.

We have conducted extensive experiments on both the publicly
available TalkShow dataset [Yi et al. 2023] and a more comprehen-
sive, newly curated dataset. On both datasets, our method demon-
strates significant improvements. It achieves real-time performance,
with a 13.1x speedup compared to the teacher model, while con-
currently improving upon the teacher model’s visual quality by
10% in lip synchronization and 2% in motion coherence. Our ap-
proach consistently outperforms recent audio-driven and pose-
driven methods in terms of generation quality, lip synchroniza-
tion, and hand motion realism, while being significantly faster. We
further include a thorough ablation study to quantitatively and
qualitatively analyze the effectiveness of both sparse attention and
distillation loss. To our knowledge, our work presents the first real-
time diffusion-based co-speech avatar. Our code and models are
available at https://beijiall.github.io/IASA.
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2 Related Work

Co-Speech Video Generation. Co-speech video generation aims to
synthesize human videos driven by audio inputs, ensuring temporal
synchronization between speech and human motions, such as facial
expressions and hand gestures. One common approach divides this
task into two subtasks: generating human motions from speech, and
subsequently creating videos from these synthesized motions. Some
works solely focus on one of these subtasks [Chen et al. 2024; Liu
et al. 2024b; Tian et al. 2024; Yi et al. 2023; Zhang et al. 2025], while
others address the task as a whole [Corona et al. 2024; Ginosar et al.
2019; Hogue et al. 2024; Liu et al. 2025; Mahapatra et al. 2024; Meng
et al. 2025].

Regarding audio-to-motion generation, Speech2Gesture [Ginosar
et al. 2019] uses Generative Adversarial Networks (GANs) [Goodfel-
low et al. 2014] to generate human 2D keypoints. TalkShow [Yi et al.
2023] and EMAGE [Liu et al. 2024b] use VQ-VAEs [Van Den Oord
et al. 2017] for generating human 3D meshes, while DiffSheg [Chen
et al. 2024] replaces VQ-VAE with diffusion models [Ho et al. 2020;
Song et al. 2021]. Recent methods [He et al. 2024; Hogue et al. 2024;
Liu et al. 2022] focus on generating unsupervised motion representa-
tions [Siarohin et al. 2019a,b] to further improve the output fidelity.
In our work, we reuse the EMAGE module [Liu et al. 2024b] and
focus on accelerating the motion-to-video part, as audio-to-motion
accounts for a small portion of the overall computational costs.

For the motion-to-video task, conditional GANSs [Isola et al. 2017;
Wang et al. 2018] have been widely used to inject various mo-
tion representations into videos: Speech2Gesture [Ginosar et al.
2019] uses 2D keypoints, Mahapatra et al. [2024] use 3D textured
human meshes, and methods like ANGIE [Liu et al. 2022] and
S2G-MDDiffusion [He et al. 2024] use implicit motion representa-
tions [Wang et al. 2021]. However, GAN-based methods often strug-
gled with generalization, tending to overfit to specific identities seen
during training. To improve generalization across unseen speak-
ers and motions, recent works have increasingly adopted diffusion
models. MM-Diffusion [Ruan et al. 2023] uses a joint diffusion archi-
tecture to model multimodal correlations. Other approaches [Guan
et al. 2024; Meng et al. 2025; Tian et al. 2024; Zhang et al. 2025] have
introduced explicit intermediate pose representations as condition-
ing signals within the diffusion framework. While diffusion-based
methods outperform GANs in quality and generalization, their it-
erative denoising process and costly attention mechanisms hinder
real-time deployment. Our work aims to significantly accelerate
diffusion-based co-speech avatars.

Diffusion Model Distillation. Diffusion models [Ho et al. 2020;
Sohl-Dickstein et al. 2015; Song et al. 2021] require a large number
of denoising steps to achieve high-quality generation, limiting their
applicability in low-latency applications. To accelerate inference,
a range of distillation techniques have been proposed to reduce
the number of steps while preserving visual quality. Trajectory-
preserving methods aim to approximate the denoising trajectory of
a teacher model [Luhman and Luhman 2021; Salimans and Ho 2022].
For example, Luhman and Luhman [2021] train a single-step student
to match the teacher’s output at the final step, while Consistency
Distillation [Kim et al. 2024] trains the student to map any points on
an ODE trajectory to its origin. Rectified flow [Liu et al. 2024a] trains
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Fig. 2. Our two-stage co-speech video generation pipeline. In Stage
1, an audio input and a reference image are fed into an audio-to-motion
generator [Liu et al. 2024b] to produce motion sequences represented by
dense pose keypoints. In Stage 2, these motion sequences are fed into our
efficient student video generation network Gg, The network is conditioned
on features from the reference image, which are separately encoded by the
VAE encoder [Rombach et al. 2022] and CLIP encoder [Radford et al. 2021],
to synthesize the final video. In our work, we focus on accelerating the video
generation, significantly speeding up the teacher model [Zhang et al. 2025].

Reference Image Outpt Video

a student model on the linear interpolation path of noise-image pairs
obtained from the teacher.
In contrast to trajectory-based methods, Distribution Matching

Distillation (DMD) [Yin et al. 2024a,b] and adversarial distillation [Kang

et al. 2024; Parmar et al. 2024; Sauer et al. 2024a,b] supervise the stu-
dent at the distribution level by minimizing an approximate reverse
KL divergence [Franceschi et al. 2023; Luo et al. 2023] or through
adversarial learning [Goodfellow et al. 2014; Isola et al. 2017]. This
enables architectural flexibility between teacher and student, and
provides stronger global supervision. Our method builds upon DMD
to distill a bidirectional teacher into an efficient student. However,
DMD loss alone is insufficient for our task, which motivates us to
introduce new modules that leverage input pose sequences.

Video Generation Acceleration. Accelerating video diffusion mod-
els [Blattmann et al. 2023; Ho et al. 2022; Peebles and Xie 2023]
is critical due to their high computational cost. Common strate-
gies [Lin et al. 2025; Lin and Yang 2024; Zhai et al. 2024] include
reducing denoising steps using model distillation [Kang et al. 2024;
Luhman and Luhman 2021; Yin et al. 2024b] or accelerating at-
tention computation. This includes causal attention, inherent in
autoregressive models [Alonso et al. 2024; Chen et al. 2025; Jin et al.
2024], where the current frame only attends to the past frames. This
also enables streaming video generation and long video synthe-
sis [Yin et al. 2025]. Other methods use attention sparsity [Child
et al. 2019], for instance, by dynamically identifying spatiotemporal
patterns [Xi et al. 2025]. However, existing methods do not fully
exploit domain-specific cues, such as those available in co-speech
video generation. In contrast, our method leverages input human
pose information to design sparse attention and distillation loss.
Our method outperforms generic video distillation methods by a
large margin.

3  Method

We introduce a real-time, audio-to-video generation model that cre-
ates a co-speech video from an audio clip and a speaker’s reference
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image. Our key idea is to distill a slow teacher video model into a fast
student model using input-aware sparse attention and distillation.
Below, we first describe our co-speech video generation pipeline
in Section 3.1. Then, we introduce a sparse attention mechanism
conditioned on the input human poses in Section 3.2, which dramat-
ically reduces computation costs. Finally, Section 3.3 describes our
distillation objective, which further increases the quality of crucial
regions such as faces and hands.

3.1 Co-Speech Gesture Video Generation

As shown in Figure 2, we adopt a two-stage pipeline for co-speech
gesture video generation, which consists of generating motion se-
quences from audio and synthesizing the corresponding gesture
videos. For the first stage, we build on the EMAGE framework [Liu
et al. 2024b], which converts speech audio and a reference image
into temporally aligned upper body motion sequences, including
facial expressions, hand gestures, and body movements. These mo-
tion sequences are represented as dense pose keypoints to capture
structural motion information. In the second stage, we leverage
input-conditioned video diffusion models [Zhang et al. 2025] as
our teacher model, which takes a reference image and a motion
sequence to synthesize temporally coherent and identity-consistent
videos. This pipeline forms the basis for our proposed acceleration
method, as described in the following sections.

3.2 Input-Aware Sparse Attention

We operate on a video sequence consisting of T frames, where each
frame is represented by N tokens. Let tgti € {1,...,T} be the
indices for a query and a key frame, and i, j € {1,..., N} be the
respective token indices within these frames. To eliminate irrelevant
interactions and accelerate attention computation, we employ an
attention mask M(tq, i, ty, j) € {0,—co}, where M(tq, it j) =0
indicates that token i in frame 4 is permitted to attend to token j
in frame f;.. Conversely, M(tq, I, I, j) = —oo denotes that attention
between the token pair is suppressed. We next introduce global
and local attention masking mechanisms designed to specify which
frames and which regions the model should attend to, respectively.

Input-Aware Global Attention Masking. To ensure our temporal
attention mechanism focuses on the relevant past information and
adheres to causality, we introduce an input-aware global attention
mask Mgjopal- This mask guides the attention computation by iden-
tifying a pertinent subset of historical frames for each current frame
tq.

For each frame t € {1,..., T}, we represent its pose with B upper-
body keypoints, denoted as P; € RB*2. To quantify pose similarity
between the current frame t4 and a historical frame #; < tg, we con-
sider a global transformation matrix 7 applied to P, to compensate
for the subject’s global movement. The similarity S(tg, ;) is then
computed as the minimum alignment error, defined by:

5(tg 1) = min|[Pr, — z(Py)|l2, (1)

where 7 is a rigid transformation matrix. For each current frame tg,
we select the top-K most similar historical frames to construct the
attention mask accordingly. Let Sy, = {S(tg, ) | tx < tq} be the
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(a) Input-Aware Global Attention Masking
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Fig. 3. Input-Aware Sparse Attention. Our attention mechanism selectively focuses on tokens within salient body regions and their corresponding areas

in temporally relevant frames. (a) We first apply global masking, which restricts attention to the K most similar past frames based on pose similarity. (b)
Then local masking limits inter-frame attention to matched regions (e.g., face, hands) to enhance temporal coherence. (c) Our input-aware attention masking

integrates both global and local masks to form an efficient and structured sparse attention pattern.

set of similarity scores with previous frames, and St(qK) be the K-th
smallest value in Sy .
We define input-aware global attention mask Mgiobal (fg tx) as:

0, ifS(tyt) < S}f)

—oo, otherwise.

Mglobal(tq’ it j) = { (2)

When applied to the attention logits prior to the softmax opera-
tion, this mask ensures that only the top-K most similar historical
frames contribute to the attention computation for frame t4. We call
this the global attention mask because its value is constant for all
token pairs (i, j) between any two frames t4 and t;, as it depends
only on these frame indices.

Input-Aware Local Attention Masking. To further enforce local
consistency and focus temporal attention on relevant body parts
in human subjects, we introduce an input-aware mask Mjo¢,1. The
mask partitions tokens into coherent local regions, as defined by
keypoint locations estimated via the rigid moving least squares
transformation [Schaefer et al. 2006]. This formulation supports
dense attention within each frame while constraining inter-frame
attention to correspondences across homologous local regions. Let
R = {faces, hands, arms, bodies, shoulders} be the set of local re-
gions. Each region r € R corresponds to a fixed subset of token
indices 7, C {1,..., N}. We then define the local attention mask

Mlocal(tq) it ) as:
0, iftg =ty

Mlocal(tq’ i, tg, J) =10,

—oo, otherwise.

®)
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This formulation ensures that inter-frame attention focuses on
locally corresponding areas (e.g., face regions attending to other
face regions), while intra-frame attention remains dense to capture
local context.

Input-Aware Sparse Attention Mechanism. We adopt M as our final
mask for attention, where M = Mgjobal + Miocal- This design enables
the attention mechanism to adapt dynamically to the input signals,
focusing on critical regions (e.g., faces and hands) while minimizing
redundant computation in static areas, such as the background.

To ensure efficient execution on modern hardware, attention is
computed over blocks rather than individual 1x1 tokens. Specifically,
we apply a pooling operation with a block size of 128 X 128 [Guo
et al. 2024] to construct the sparse attention mask by Flashinfer [Ye
et al. 2025], which substantially reduces the number of attention
queries while preserving fine-grained structure.

3.3 Input-Aware Model Distillation

Now we distill the original multi-step teacher video diffusion model
with full attention into an efficient student model with input-aware
sparse attention. This enables real-time video generation while
maintaining perceptual quality.

DMD Loss. Following variational score distillation [Wang et al.
2023] and distribution matching distillation (DMD) [Yin et al. 2024a,b],
the student model Gy is trained to match the latent distributions
of the teacher in fewer timesteps. Specifically, the student mini-
mizes the reverse Kullback-Leibler (KL) divergence between the
student’s data distribution pgen(x;) and the teacher’s data distribu-
tion pata (X¢) at randomly sampled timesteps ¢:



VoLpmp = B [VHKL(Pgen,t”Pdata,t)] 4
dGg
~ -E; (sdata (x4, t) = Sgen (xs, t)) -5 |
a0
where sgat, (X¢, t) and sgen (Xs, t) denote the score functions of the
teacher and student models at timestep ¢ for the input x;, respec-
tively. This formulation encourages the student to approximate the
teacher’s denoising behavior with fewer steps, achieving a balance
between efficiency and fidelity.

Input-Aware Distillation Loss. We compute an input-aware loss
over all regions by applying masks m, to the full ground-truth image
x and the generated image %. These masks are specific to each image,
constructed from its pose information to delineate the same region
type r. The unified loss is formulated as follows:

Lregion = Z Ar Lr(mr ox,my O )A(): (5)
reR

where © denotes the Hadamard product (element-wise multiplica-
tion), A, balances the importance of each region, and £, (-, -) denotes
the reconstruction loss for each region. Specifically, for the face re-
gion, we extract feature embeddings using a pre-trained ArcFace
network [Deng et al. 2019a] and compute L2 distance between the
two, while for other regions, LPIPS metric [Zhang et al. 2018] is
used. This approach leverages specialized metrics for distinct re-
gions. Face-specific and gesture-specific losses have been used in
prior works in video generation [Richardson et al. 2021; Zhang et al.
2025]. Here, we adopt them for the video distillation task.

Final Objective. Combining the distribution matching distillation
loss and the input-aware distillation loss, the overall training objec-
tive for the student model Gy is

G; = arg ncl;ign Lpmp (Gy) + Aregion Lregion (Go), (6)

where Aregion is a scalar hyperparameter controlling the trade-off
between matching the teacher’s latent distributions and preserving
semantic regional consistency.

4 Experiments
4.1 Experimental Setups

Datasets. We evaluate our method on two datasets: the public
TalkShow dataset [Yi et al. 2023], which contains four speakers
with varied backgrounds and irregular camera movements, and
our curated YouTube Talking Video dataset. Our YouTube dataset
features 45 speakers with diverse appearances in half-body and
headshot views, set against clean backgrounds with static cameras.

To extract human poses, we use DWPose [Yang et al. 2023] and
apply a strict filtering pipeline to ensure high-quality pose informa-
tion. We retain only frames where (1) facial keypoint confidence
exceeds 0.9, (2) upper-body keypoint confidence exceeds 0.8, and (3)
upper-body keypoint visibility is at least 90%. This filtering process
yields reliable upper-body and frontal-face cues for training.
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Metrics. We evaluate our method using a comprehensive set of
metrics, including image and video fidelity (FID [Heusel et al. 2017],
FVD [Unterthiner et al. 2019], E-FID [Deng et al. 2019b]), image
quality (PSNR, SSIM [Wang et al. 2004]), audio-lip synchronization
(Sync-C, Sync-D) [Prajwal et al. 2020], hand motion quality and
diversity(HKC, HKD) [Lin et al. 2024], and inference efficiency (FPS).
Specifically, Sync-C and Sync-D measure the alignment between
speech and lip movements, while E-FID evaluates the alignment of
emotional expressions between the generated and real videos. HKC
and HKD evaluate the average detection confidence and variance
of the hand keypoints in the generated sequence. The reported FPS
is measured on an NVIDIA H100 GPU, excluding I/O latency, to
accurately reflect the model’s performance.

4.2 Implementation Details

Similar to the teacher model, we train our model across speakers
with diverse visual and motion characteristics. The training proce-
dure consists of two stages. First, we fine-tune the teacher model by
incorporating our input-aware sparse attention, utilizing 4 NVIDIA
H100 GPUs for approximately 6 hours. Second, we distill the student
model from the adapted teacher, which takes about 10 hours on 8
NVIDIA H100 GPUs.

4.3 Comparisons

We compare our method with recent open-source methods in both
audio-driven and pose-driven video generation settings. For audio-
driven baselines MMDiffusion [Ruan et al. 2023] and S2G-MDD [He
et al. 2024], which are trained per speaker, we perform our evalua-
tion on the same TalkShow [Yi et al. 2023] dataset to ensure a fair
comparison. For pose-driven baselines, we compare against Ani-
mateAnyone [Hu et al. 2023], EchoMimicV2 [Meng et al. 2025], and
MimicMotion [Zhang et al. 2025] on our YouTube Talking dataset.
To evaluate the complete co-speech pipeline, we use our audio-
to-motion module to generate pose sequences as input to these
methods. EchoMimicV2 [Meng et al. 2025] accepts audio as input,
its video generation strictly relies on externally provided pose se-
quences rather than audio-driven motion prediction. Therefore, we
categorize it as a pose-driven method.

Quantitative Results. As detailed in Table 1, our method achieves
approximately 3X faster inference compared to existing audio-driven
and pose-driven baselines. In addition to speed, our approach pro-
duces higher-quality and more realistic results. Compared with
audio-driven methods, our model not only maintains high genera-
tion quality but also substantially improves Sync-C and HKC. More
specifically, the lip synchronization confidence significantly im-
proves from 4.36 to 7.26. Additionally, compared to S2G-MDD, our
method improves HKC from 0.956 to 0.968 on the test set.

Compared to pose-driven methods, our approach outperforms
others in both lip synchronization and overall motion quality. Re-
markably, our student model, when compared with its teacher model
MimicMotion [Zhang et al. 2025], not only achieves an impressive
13.1x inference acceleration without sacrificing generation qual-
ity, but also further enhances motion and synchronization quality.
Specifically, our model substantially improves HKC from 0.928 to

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 5. Qualitative comparison of pose-driven methods. All methods are conditioned on the same motion sequence and reference image. Our approach
produces more realistic faces, hands, and body movements.
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Output Video

Reference Image

Fig. 6. Additional Qualitative Results. This figure presents a selection of further examples generated by our method. Given only a single static reference
image and an input audio clip, our model effectively synthesizes highly realistic and expressive video outputs. These results visually demonstrate its capability
to produce natural facial expressions, fluid body movements, and accurate lip synchronization in real time.
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Table 1. Quantitative comparison with state-of-the-art methods. We evaluate audio-driven methods on the TalkShow dataset [Yi et al. 2023] and
pose-driven methods on the YouTube Talking Video dataset. Metrics include image and video fidelity, audio-lip synchronization and hand motion accuracy.
Bold indicates the best result within each group of audio- or pose-driven methods.

Method

FPST FID| FVD| SSIMT PSNR7T

HKCT HKDT Sync-CT Sync-D| E-FID|]

Audio-Driven

MMDiffusion [Ruan et al. 2023] 2.82 8125 985.06 0.549 17.62 0.946 23.24 3.44 8.02 4.71
S2G-MDD [He et al. 2024] 6.89 68.11  883.48 0.552 19.00 0.956 23.44 4.36 7.59 3.39
Ours 25.31 66.81 823.58 0.596 19.40 0.968 24.26 7.26 6.98 3.16
Pose-Driven

AnimateAnyone [Hu et al. 2023] 2.07 61.23  759.83 0.752 20.94 0.921 24.63 2.00 9.38 5.08
EchoMimicv2 [Meng et al. 2025] 892 5798 611.65 0.800 22.02 0.939 24.83 7.19 7.02 2.97
MimicMotion [Zhang et al. 2025] 1.93 56.32  628.03 0.823 23.89 0.928 24.82 4.56 7.34 3.38
Ours 25.31 57.01 610.34 0.829 23.42 0.948 24.83 7.28 6.99 3.01

+local attn +globak attn Teacher

Ours

Fig. 7. Qualitative ablation on model components. While the com-
bination of global attention and causal attention improves efficiency, it
introduces degradation in the hand and mouth regions. Our input-aware
distillation not only restores visual fidelity and temporal consistency, but
also achieves real-time performance with natural and synchronized motion.

0.948 and Sync-C from 4.56 to 7.28, demonstrating enhanced hand
motion confidence and lip synchronization.

Qualitative Results. As shown in Figure 4, our method demon-
strates clear improvements over existing audio-driven methods in
lip-audio synchronization, expressive hand gestures, and overall
visual quality. Specifically, our generated videos exhibit better lip-
audio synchronization, where the lip movements align more natu-
rally with the speech content. Additionally, the overall visual qual-
ity is significantly higher, producing sharper and more realistic
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Table 2. Quantitative ablation on model components. We analyze the
effect of progressively incorporating architectural components. Introducing
input-aware attention and distillation substantially accelerate inference but
degrade quality. In contrast, our input-aware distillation achieves improved
motion realism accuracy while maintaining real-time performance.

Method FPST SSIMT PSNRT HKCT Sync-C17
Teacher 1.93 0.823 23.89 0.928 4.56
+finetuned 1.93 0.835 24.01 0.945 7.15
+global attention  3.28  0.834 23.89 0.943 7.14
+local attention 442 0831 23.89 0.943 7.14
+ LMD 2531 0.826  22.99  0.941 7.08
+LRegion (Ours) 2531 0.829 23.87 0.948 7.28

appearances compared to the blurry or less realistic results from the
baselines. Figure 5 shows that our method generates more natural
lip and hand animations than pose-driven baselines. Existing pose-
driven methods often produce stiff or unnatural movements in these
critical regions. In contrast, our model maintains high fidelity and
realism, with lifelike facial and hand animations, while achieving
faster inference.

4.4  Ablation Study
We conduct ablation studies on the YouTube Talking Video dataset.

Ablation Study on Model Components. We conduct an ablation
study to analyze the contribution of each component, with results in
Table 2 and Figure 7. Leveraging the teacher model as the baseline,
we observe strong motion and lip synchronization performance after
being fine-tuned on the co-speech dataset. However, the inference
speed remains a bottleneck at 1.93 FPS. While input-aware global at-
tention and input-aware local attention maintain generation quality
without degradation, the speed improvements are limited. Direct
application of DMD distillation achieves a significant speedup but
results in quality degradation, particularly noticeable artifacts on
faces and hands. By incorporating our input-aware distillation, the
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Fig. 8. Ablation on Efficiency. We compare the inference time with the
incorporation of input-aware attention and distillation. Our method signif-
icantly reduces computation while preserving quality, enabling real-time
performance.

model achieves real-time performance at 25.31 FPS while maintain-
ing generation quality comparable to the finetuned Teacher model.

Ablation Study on Efficiency. We present a detailed breakdown of
the inference time across different architectural variants by decom-
posing the total runtime into four components: Attention, Linear,
Norm, and Others in Figure 8. The baseline Teacher model requires
103.6 seconds to process an 8-second video. By introducing Global
Attention, we reduce the time to 60.9 seconds, mainly due to reduc-
tions in attention and linear computations. Local Attention further
decreases the time to 45.2 seconds. Finally, applying distillation re-
duces the runtime to 7.9 seconds, a 13.1x speedup compared to the
Teacher model, primarily attributed to the substantial reduction in
attention costs. This demonstrates the effectiveness of our sparse
attention strategy in enabling real-time co-speech video generation.

4.5 Results

Additional Qualitative Results. In Figure 6, we present additional
qualitative examples generated by our method to illustrate its visual
quality and expressiveness. Conditioned on a single static reference
image and an input audio clip, our model synthesizes temporally
coherent video sequences with high appearance fidelity and natural
motion. The results demonstrate lifelike facial expressions, smooth
upper body movements, and precise synchronization of the audio
lip, even under variations in speaker identity, pose, and expression.
These examples highlight the robustness of our method in capturing
fine-grained motion dynamics while preserving speaker identity
across frames. In addition, they complement the quantitative evalu-
ations by providing intuitive evidence that our method can generate
visually convincing talking videos in real time, underscoring its po-
tential for applications in human-computer interaction and digital
content creation.

Long Video Generation. We adopt a progressive strategy for long
video generation that explicitly enforces temporal smoothness across
extended sequences. At each denoising step, the video is partitioned
into consecutive segments, and each segment is generated inde-
pendently by conditioning the trained model on a fixed reference
image together with its corresponding sub-sequence of poses. To
guarantee consistency between adjacent segments, the overlapped
frames are progressively fused according to their temporal indices.
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Table 3. User Preference Study. Results of a user study evaluating the
perceptual quality of video generation. Participants were asked to compare
our method against baseline approaches along three aspects: Lip Synchro-
nization, Motion Realism, and Video Quality. The table reports preference
rates (%) across all participants for each method.

User Preference

Method
Lip Sync  Motion Realism  Video Quality

MMDiffusion 2.3% 11.1% 2.2%
S2G-MDD 13.2% 15.6% 6.7%
Ours 84.5% 73.3% 91.1%
AnimateAnyone 8.9% 16.7% 18.9%
EchoMimicV2 31.1% 24.4% 24.4%
MimicMotion 12.2% 26.7% 27.8%
Ours 47.8% 32.2% 28.9%
Ground Truth 54.5% 46.7% 56.6%
Ours 45.5% 53.3% 43.4%

This progressive design not only mitigates the accumulation of tem-
poral artifacts but also preserves global coherence throughout the
sequence, enabling our method to stably generate videos of several
minutes in length without noticeable degradation in visual quality
or motion dynamics.

User Preference Study. We conduct a user preference study on
Amazon Mechanical Turk (AMT) with 30 participants to evaluate
the perceptual quality of our generated videos. Specifically, each
participant is asked to perform three separate pairwise comparisons
over 72 videos: (1) our method vs. audio-driven generation, (2) our
method vs. pose-driven generation, and (3) our method vs. ground
truth (GT). In each comparison, participants are presented with
videos generated from identical reference images and audio inputs,
displayed in randomized order without revealing the underlying
method. For each trial, users are asked to indicate their preference
in terms of lip synchronization, motion realism, and overall video
quality. As reported in Table 3, our method is favored by users in
comparison to baselines, and its performance is comparable to the
ground truth.

5 Discussion and Limitations

Limitations. Our current method still has several limitations. First,
we cannot handle videos with dynamic backgrounds or complex
scene motion, as our input-aware sparse attention assumes a rela-
tively static camera and background. This limits the applicability
of our approach to studio-like or controlled environments. Second,
while our method improves lip synchronization and hand motion
realism, it still struggles with subtle gestures, such as finger articu-
lation, as shown in Figure 9. Third, our current system is trained
and evaluated primarily on monolingual English-speaking datasets.
Extending to multilingual or code-switching scenarios may require
additional modeling of phoneme-to-gesture dynamics across lan-
guages. Lastly, although our model runs in real-time, it still requires
a relatively powerful GPU for inference, which may restrict its
deployment on edge devices or mobile platforms.
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Fig. 9. Limitations. Given the same motion input (left), we observe that
when fingers undergo fine-grained movements, our model tends to produce
blurry or distorted hand regions.

Ethics Considerations. Our research advances generative models
for human video synthesis. We recognize that this technology may
also be misused for malicious purposes such as spreading misin-
formation, damaging reputations, or producing deceptive content.
Prior studies [Cozzolino et al. 2021; Wang et al. 2020] on deepfake
detection have shown that generated videos often contain detectable
artifacts, underscoring the importance of video forensics in mitigat-
ing these risks. However, current forensic techniques remain limited,
and the continued advancement of generative models necessitates
parallel progress in detection to ensure reliability.

Conclusion. In this work, we introduced a new conditional video
distillation framework specifically designed for fast and high-quality
co-speech video generation. Our core approach leverages pose in-
formation as a natural and effective conditioning signal, guiding
both the attention and the supervision mechanisms of our student
model. To achieve this, we proposed an input-aware sparse attention
module that intelligently focuses computation on dynamically im-
portant regions across frames, alongside an input-aware distillation
loss which prioritizes visual fidelity in critical areas like the face and
hands. Collectively, these components enabled our distilled model
to achieve real-time inference speeds, all while not only preserving
but significantly enhancing motion realism and lip synchronization
quality compared to the teacher model.
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