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AniFeats: Animate 3D Feature Meshes for
Character Video Generation
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Fig. 1. (i) AniFeats generates consistent character videos from reference images and motion sequences. (ii) Existing methods [16], [43], [52], [61] only
implicitly associate the reference image with the generated image, leading to inconsistency in the generation. (iii) AniFeats explicitly transfers the features
from the reference image to the generated images via animated feature meshes, improving the consistency.

Abstract—Generating high-quality character animation videos
is a fascinating yet challenging task. Existing methods use
geometry guidance signals like skeletons, normal maps, or
depth maps in a diffusion model to generate character videos
from a single reference image. Although these approaches have
shown encouraging results, they solely rely on cross attention
layers to extract geometry guidance which inevitably leads to
temporal inconsistencies and reduced quality. In this paper, we
present a novel framework AniFeats to generate high-quality
character animation videos. In contrast to existing methods, our
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key insight is to incorporate explicit features on 3D character
meshes during the video generation to achieve significantly
improved temporal consistency. Specifically, AniFeats extracts
detailed features from the reference image, projects them onto
3D feature meshes based on SMPL-X, and utilizes rendered
feature maps from the animated 3D feature meshes as guid-
ance throughout the generation process. This approach directly
links local patterns in the input image to those in the output
video, effectively strengthening temporal coherence. Extensive
experiments demonstrate that AniFeats generates high-quality,
temporally consistent character animations with remarkably
enhanced realism. Our code and models will be publicly available
at https://github.com/Beijia11/AniFeats

Index Terms—Video Generation, Character Animation, Hu-
man Video Generation.

I. INTRODUCTION

CHARACTER animation videos are among the most vital
forms of video content, serving an irreplaceable role in

content creation for the gaming, film, and AR/VR industries.
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Their ability to bring stories and characters to life enables
immersive narratives that resonate deeply with audiences.
Early-stage works [33], [36], [55] in this area are mainly based
on GAN [11] to generate human images of novel poses but are
limited by the representation capacity and stability of GANs
and fall short in producing high-quality animation videos.

Recent diffusion models [14], [32] have shown a strong
ability to generate high-quality videos. Thus, many works [16],
[35], [52], [61] tried to utilize diffusion models to generate
character animation videos. These methods typically take a
reference image of a specific character and a motion sequence
as input for generating an animation video that matches the
given character and motion, using both as control guidance to
the diffusion model for generation.

Although encouraging results are achieved, existing meth-
ods [16], [35], [52], [61] still struggle to maintain identity
consistency with the input reference image and temporal con-
sistency over time, which restricts the quality of the generated
videos. This is because existing works represent target motions
solely with 2D images, i.e., skeleton images, depth maps,
semantic maps, or normal maps, as conditions for the diffusion
model. Then, attention layers are applied to implicitly asso-
ciate the input reference images with these target motions. For
example, as illustrated in Fig. 1 (ii), the diffusion model has to
implicitly learn the chest of the target motion corresponding to
the chest in the reference image through attention layers. Such
implicitly inferred correspondences between target motions
and reference images may lack accuracy and can vary over
time, resulting in generated videos that struggle to maintain
both identity and temporal consistency. This phenomenon
becomes even more severe when the input reference image has
an incompatible human pose with the target motion sequence
as shown in Fig. 2.

In this paper, we address the above challenges by proposing
a novel method called AniFeats for high-quality character
animation video generation. The key idea of AniFeats is to
explicitly transfer the image features of the reference image
to the generated frame via the animation of the 3D SMPL-X
mesh, as shown in Fig. 1 (iii). Specifically, we first extract
latent features from the reference image and then build 3D
feature meshes by projecting these features onto the 3D
SMPL-X mesh estimated from the reference image. Later,
given the target motion sequences, we deform the 3D feature
SMPL-X mesh accordingly and rasterize this animated feature
mesh on target viewpoints to get feature maps. These feature
maps contain the features extracted from the reference image
but are animated to the target motion sequences and thus
explicitly build correspondences between the input reference
image and the target motion sequence. Finally, we utilize these
rasterized feature maps as the condition to guide the diffusion
generation.

Adopting the above animated feature meshes for video gen-
eration has the following two prominent advantages. First, this
improves the temporal consistency. The animated 3D features
associate the same 3D regions across different frames, which
serves as a strong signal for the diffusion model to maintain
cross-frame temporal consistency. Second, the explicit feature
transferring improves the identity consistency and bridges the

Ref Image & Initial Pose w/o Feature Mesh w/ Feature Mesh

Fig. 2. Comparison of generated results on the Unpaired Dataset. The
explicit feature mesh in AniFeats effectively reduces the discrepancy between
the reference pose and the target motion.

gap between the input reference pose and the target motion.
Because even when the input reference pose deviates largely
from the target motion sequence, the feature extraction on the
reference image follows the estimated reference poses to select
correct regions as shown in Fig. 2.

We validate the effectiveness of AniFeats on a large number
of challenging cases where our method demonstrates higher
identity preservation and temporal consistency in character
videos compared to baseline methods. Our method enables
animating different characters with the same motion sequences
and also the same character with different motions. Further-
more, we further showcase the capability of AniFeats in 4D
video generation with robust temporal and spatial coherence
for producing high-quality, consistent animations.

II. RELATED WORK

A. Image-guided 2D human animation

Traditional approaches for 3D human animation [18], [20],
[34], [55] typically rely on learning the human deformation
field from multi-view or monocular videos, or multiple static
images. However, these methods often require extensive video
capture, which limits their practical application in real-world
scenarios. Fortunately, recent advances in diffusion models
have led to techniques capable of animating humans [5], [8]–
[10], [23], [35], [38], [39], [41], [43] from a single input
image. DreamPose [22] leverages the pre-trained Stable Dif-
fusion model and incorporates both CLIP [31] and VAE [24]
for efficient image encoding. DisCo [42] takes an innovative
approach by using dual independent ControlNets [58] to
separately control pose and background, offering more fine-
grained control over the animation process. AnimateDiff [13]
introduces a temporal layer to the denoising UNet to improve
temporal coherence in animations. Animate Anyone [16] uses
a UNet-based ReferenceNet to extract features from reference
images, while MagicAnimate [52] employs a ControlNet based
on DensePose [12] inputs for more accurate pose guidance
compared to traditional OpenPose [7] keypoints. Champ [61]
leverages SMPL [25] as their motion conditions to achieve
more consistent results. However, it only considers the ge-
ometry priors derived from SMPL. Follow-Your-Pose [26],
[53] leverages optical flow to separate the background and
successfully achieves multi-person animation. Unfortunately,
existing methods face significant challenges due to the lack of
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Fig. 3. Pipeline of AniFeats. Given an input motion sequence and a reference image, we first extract the feature map from the reference image and build
the corresponding animated feature meshes. The video and the associated conditions are then encoded using a VAE encoder and concatenated before being
processed by the CNN downsampler. Finally, a diffusion transformer model (DiT) leverages these conditions to denoise the noise latent and a VAE decoder
generates the character video.

3D spatial information in the input. This limitation makes it
difficult to maintain consistent human textures during anima-
tion, especially when dealing with complex scenarios such as
large pose variations or significant rotation.

The concurrent works like Human4DiT [35], Animate-
X [37], and HumanVid [44] achieve strong results by utilizing
a large-scale dataset or DiT-based framework for even multi-
human video generation. The contribution of these works is
orthogonal to ours because we focus on utilizing 3D features
as conditions and are also compatible with their framework.

B. Animatable 3D Human Reconstruction from Images

Recent advances have explored generating animatable 3D
human models from monocular images or videos for ap-
plications in character animation and virtual environments.
TeCH [51] employs text-guided reconstruction to produce life-
like clothed humans, while SiTH [15] uses image-conditioned
diffusion to recover textured 3D humans from single views.
IntrinsicAvatar [40] applies physically based inverse rendering
and explicit ray tracing to reconstruct dynamic humans from
monocular videos, and AnimatableGaussian [47] enables fast,
high-quality multi-avatar reconstruction via Gaussian splatting.
While these methods yield fully animatable 3D representa-
tions, they require complete geometry reconstruction, often
with high computational cost. In contrast, our approach uses
3D feature meshes derived from geometry signals such as
skeletons, normal maps, and depth maps. Although stored
as 2D images, these cues inherently encode 3D structure,
enabling efficient animation guidance without full mesh re-
construction and avoiding the heavy optimization pipelines of
prior methods.

C. Parametric 3D human model

Parametric 3D human models [25], [28] provide a compact
and expressive representation of the human body. SMPL [25]
established the foundation with a statistical mesh model, while

SMPL-X [28] extended it with additional joints and expression
parameters, enabling more detailed reconstruction [56], [57].
Recent works further address clothing and hair [3], [21], [48],
[60], broadening applications to realistic scenarios. Despite
limited training data, these models have become strong 3D pri-
ors for reconstruction [49], [50] and novel view synthesis [30],
[46]. In our framework, we leverage the SMPL-X [28] mesh
to link reference images and target motions, ensuring identity
and temporal consistency in generated videos.

III. METHOD

Given a reference image Iref containing a human and a
motion sequence θ1:N = {θ1, . . . , θN} with N denoting the
number of frames, our goal is to generate a video sequence
I1:N = {I1, . . . , IN} that preserves the appearance of the
human of Iref while following the specified motion θ1:N .

A. Overview

Pre-processing. On the given reference image, we apply the
SMPLer-X [6] to estimate the pose θref and the body parame-
ters βref. Then, we combine the estimated body parameter βref
with the given poses θ1:N to get a set of deformed SMPL-
X [28] meshes M1:N := {M(βref, θi)|i = 1, ..., N}, where
M(βref, θi) means applying the body parameters βref and the
pose θi to generate a posed SMPL-X mesh.

Overview. Based on the given SMPL-X mesh sequence,
we construct a set of condition maps to control our diffusion
model for the video generation, as introduced in Sec. III-B.
Our key idea is to construct a 3D feature mesh and render the
feature map to explicitly associate the reference image and the
generated frames, which is illustrated in Sec. III-C. Finally, we
introduce our training strategy in Sec. III-D

B. Pose Conditioned Diffusion

In this section, we introduce our conditional diffusion
generative model using the conditions from an SMPL-X
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Fig. 4. Architecture of Diffusion Transformer (DiT) blocks. In each
DiT block, the concatenated embedding sequentially passes through the Full
Attention, Gate, and Feed Forward modules. After processing through the
predefined blocks, the latent is decoded to reconstruct the video.

parametric model as guidance for generation. An overview
of our conditional generative model is shown in Fig. 3.

a) Conditional diffusion generation: We apply a
transformer-based video diffusion model [29] with additional
conditions to generate our video. The video diffusion model
uses a VAE encoder to compress the video and conditions into
the latent space and apply an inverse Markov chain to generate
data on the latent space. Starting from a pure Gaussian noise
zT with T denoting the maximum diffusion timestep, we
iteratively apply a diffusion transformer ϵ(zt, t, c) to denoise
zt to z0, and the output denoised latent is processed by a VAE
decoder to get the final video. c represents all the conditions
constructed from the pose sequence θ1:N and the reference
image Iref .

b) Condition construction: We construct the skeleton
images corresponding to the pose sequences as the conditions
to the diffusion model. Then, the pretrained VAE is applied
to compress both the reference image and the skeleton images
into a shared latent space, where they are concatenated along
the feature dimension. A CNN-based downsampling module
is applied to align the latents to the same input shape as
CogVideoX [54]. Subsequently, the concatenated embeddings
are then processed by several diffusion transformer (DiT)
blocks, whose detailed architecture is illustrated in Fig. 4.
Then, the model decodes the latents using a 3D causal VAE
decoder to reconstruct the video. We select skeleton images as
conditional guidance rather than normal maps or depth maps
because our feature map already incorporates both normal
and depth information, which encodes 3D properties and
texture cues. Combining these appearance-rich features with
motion sequences enables the model to capture both temporal
dynamics and detailed visual information, leading to improved
pose control and appearance consistency.

c) Discussion on reference image condition: Previous
UNet-based diffusion models, like Champ [61], process the
reference image with a separated reference UNet and then
apply the cross attention between the denoising UNet and the
reference UNet to inject controls. In contrast, our method is
different from these works in terms of directly concatenating
all the conditions instead of applying cross attention layers.
When we directly applied the cross attention strategy to
our DiT-based framework, we observed a significant drop
in performance. The model struggled to capture appearance
information from the conditioning input. We hypothesize that

Reference Image GT Cross Attention+DiT CNN+DiT

Training Loss Curve

Cross Attention+DiT

CNN+DiT

Fig. 5. Comparison of Different Feature Injection Methods. The upper
panel compares visual results: the first column shows the reference image
used as model input, the second column presents the ground truth (GT),
and the third and fourth columns display results from cross-attention-based
conditioning and CNN-based concatenation, respectively. The lower panel
shows the corresponding loss curves, indicating that the cross-attention + DiT
setting fails to converge compared in training.

this issue stems from fundamental differences in the nature of
intermediate features between UNet and DiT. Unlike UNet,
where hierarchical features exhibit strong spatial structures
conducive to cross-attention, the DiT blocks process infor-
mation in a more abstract and global manner. This structural
difference likely reduces the effectiveness of cross-attention
for conditioning, which makes it less suitable for direct condi-
tional information incorporation and necessitates an alternative
integration strategy. Thus, we propose a simple alternative to
concatenate all conditions as inputs, which performs well on
our datasets.

The comparison in Fig. 5 illustrates the effect of different
conditioning strategies. The cross-attention-based approach
struggles to maintain appearance consistency and fails to con-
verge during training, whereas our CNN-based concatenation
effectively preserves structural details and enhances temporal
coherence.

d) Motivation of 3D feature meshes: As stated in the
introduction, the skeleton images only contain information
about the current target poses while being agnostic to the
input reference images. Thus, the current diffusion model DiT
blocks implicitly associate the reference image with the current
target pose, which brings difficulty in maintaining temporal
consistency and identity consistency. In the following, we
introduce our idea of constructing 3D feature meshes and
explicitly rendering the features of the reference image on
the target pose and viewpoints as conditions for improved
temporal and identity consistency.

C. Feature Mesh Extraction

In this section, we construct 3D feature meshes to render
feature maps as conditions of our diffusion model, as shown
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Fig. 6. Construction of feature meshes and conditional feature maps.
To explicitly integrate 3D information, we estimate the SMPL-X mesh from
the reference image and assign the latent features extracted by the pretrained
VAE to the SMPL-X mesh. Then, the SMPL-X mesh is animated with a target
motion and we render feature maps from animated meshes as conditions for
diffusion models.

in Fig. 6.
a) 3D feature SMPL-X mesh: To construct the 3D feature

mesh, we first extract the pretrained VAE latent features on the
input reference image. Then, we project all the vertices of the
SMPL-X mesh Mref = M(βref, θref) onto the reference image
to interpolate the extracted VAE features. These interpolated
features are associated with the vertices of this SMPL-X mesh.
When we deform this SMPL-X mesh Mref with a target
pose θi to get the mesh Mi = M(βref, θi), these associated
features are also transformed to the mesh Mi. We apply the
rasterization technique to render a feature map based on these
associated features. The rendered feature map is concatenated
with the video and image latents processed by VAE encoder.
Then, the concatenated latents is added to the denoising DiT
branch of our diffusion model to generate the video.

b) Discussion: Such rendered features play two essential
roles in improving both temporal and identity consistency.
First, the rendered features directly come from the input ref-
erence image, which explicitly associates the reference image
with the generated images and thus improves the identity
consistency. Second, for temporal consistency, the features of
a 3D vertex on two different video frames are exactly the same
as each other, which acts like an anchor in the feature space as
a temporal consistency constraint. For example, the feature on
the shoulder region at the i-th video frame will be exactly the
same as the feature on the shoulder at another j-th frame so
the denoising diffusion transformer can easily learn that these
two regions should have the same appearances, which thus
improves the temporal consistency. In summary, with the help
of these 3D feature meshes, we significantly improve both the
temporal and identity consistency.

D. Training

We adopt the CogVideoX-Fun-V1.1-5B-Pose model as our
base model. During the training process, we freeze the weights

of the VAE encoder and decoder and only allow the DiT blocks
and CNN downsampler to be updated. To initiate the training, a
frame is randomly selected from a human video to serve as the
reference image, and the entire video serves as the final target.
The objective of this training strategy is to effectively train our
model to learn to reference the strong guidance provided by
the reference image and the feature map during the generation.

IV. EXPERIMENTS

A. Implementation Details

We train AniFeats on a comprehensive and high-quality
dataset comprising approximately 6000 videos. This dataset
is constructed from a combination of the training set of the
TikTok [19] dataset, the Champ’s [61] training sample dataset,
and additional in-the-wild videos created from TikTok and
YouTube. We train the AniFeats model for 10k steps on 8
H800 GPUs using the AdamW optimizer with a learning rate
of 1e-4. The learning rate follows a cosine schedule with
restarts, with 100 warmup steps at the beginning of training.

B. Experimental Settings

a) Datasets: To ensure fair comparisons and adhere to
established benchmarks in the field of character animation, we
employ the test set of the TikTok dataset, which is exactly the
same as used in previous works [16], [52], [61] for evaluation.
Other than the TikTok dataset, we also adopted a self-collected
dataset for evaluation, which consists of 100 videos mainly
showing human dances. Besides the datasets for quantitative
evaluation, we also include more wild examples to show the
qualitative results.

b) Metrics: Our evaluation methodology follows stan-
dard metrics commonly used in previous methods [52], as-
sessing both single-frame image quality and overall video
fidelity. For single-frame quality, we use metrics like L1 error,
Structural Similarity Index (SSIM) [45], Learned Perceptual
Image Patch Similarity (LPIPS) [59], and Peak Signal-to-
Noise Ratio (PSNR). Video fidelity is measured using Fréchet
Video Distance (FVD). To measure pose accuracy, we compute
the Mean Per Joint Position Error (MPJPE) between the target
pose sequence and the poses extracted from the generated
videos using an off-the-shelf pose estimation model.

c) Baselines: We perform a comprehensive comparison
with several state-of-the-art methods for character video gen-
eration: (1) MagicAnimate [52] and Animate Anyone [16]
are diffusion-based approaches that employ 2D guidance,
effectively combining temporal modeling with appearance
preservation to animate human 2D images given motion se-
quences. (2) Champ [61] uses a 3D parametric model within
a latent diffusion framework, enhancing shape alignment and
providing robust motion guidance for high-quality human
animation. (3) UniAnimate [43] is a diffusion-based animation
method that integrates disentangled condition modules for
pose, human, and background into a pretrained diffusion model
for realistic animation. We implement baseline methods with
official codes except for Animate Anyone which we adopt the
model reproduced by Moore AnimateAnyone [4].
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Fig. 7. Qualitative comparison of AniFeats (ours) with Animate Anyone [16], MagicAnimate [52], Champ [61], and UniAnimate [43].

C. Comparisons

a) Quantitative comparisons: In Table I, we present the
quantitative comparison between AniFeats and all baselines
on the TikTok [19] dataset and our self-collected dataset
respectively. As shown by the results, with the 3D features as
additional conditions to our diffusion model, our approach out-
performs previous state-of-the-art methods by showing more
consistency with the groundtruth. Though our improvements
in PSNR, SSIM, and LPIPS are not very significant because
the generation results could be reasonable but not strictly
aligned with the ground truth, we can see concretely increased
consistency in the following qualitative comparison.

b) Qualitative comparisons: Fig. 7 presents qualitative
comparisons between AniFeats and baseline methods. No-
tably, methods such as AnimateAnyone [16], and MagicAn-
imate [52], which depend solely on 2D poses or skeleton
images in the generation, struggle to preserve consistency
in the human shape, particularly when the target pose and
the human orientation are largely different from those of
the reference image. These limitations result in human pose
distortion or a loss of detail in the generated videos. While
the previous state-of-the-art method, Champ [61] and UniAni-
mate [43], who utilize a 3D SMPL mesh and transferred pose
as guidance to establish a unified representation of body shape
and pose in video generation, they still fail to maintain the
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TABLE I
QUANTITATIVE COMPARISONS ON THE TIKTOK [2] AND SELF-COLLECTED DATASETS.

Methods TikTok Dataset Self-Collected Dataset
L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ MPJPE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ MPJPE ↓

AnimateAnyone [42] - 29.56 0.718 0.285 171.90 120.5 29.42 0.712 0.290 176.5 100.6
MagicAnimate [52] 3.13E-04 29.16 0.714 0.239 179.07 79.2 28.98 0.705 0.242 185.23 85.0
Champ [61] 3.02E-04 29.84 0.773 0.235 170.20 94.6 29.70 0.759 0.230 175.34 76.9
UniAnimate [43] 2.66E-04 30.77 0.811 0.231 148.08 60.8 29.75 0.762 0.240 161.17 65.2
Ours 2.89E-04 30.82 0.799 0.230 146.53 60.1 29.77 0.765 0.237 159.20 62.1

Reference w/o. Mesh w/o. 3D Feature Map Ours GT

Fig. 8. Qualitative results of ablation studies on the effectiveness of
different conditioning inputs. “w/o Mesh” refers to using only the pose map
without incorporating the SMPL-X mesh. “w/o 3D Feature Map” includes the
normal map to represent the mesh but excludes its feature maps as conditions.
“Ours” represents the full model, which integrates both the pose map and the
feature mesh to enhance appearance consistency and temporal coherence.

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDIES ON DIFFERENT

CONDITIONING INPUTS IN THE DIFFUSION MODEL. “W/O MESH” USES
ONLY THE POSE MAP AS GUIDANCE, EXCLUDING THE SMPL-X MESH.

“W/O 3D FEATURE MAP” INCLUDES ONLY THE NORMAL MAP TO
REPRESENT THE 3D MESH. “OURS” INTEGRATES BOTH POSE MAP AND

FEATURE MESH.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ MPJPE ↓
w/o. Mesh 28.52 0.691 0.276 182.13 67.2
w/o. 3D Feature Map 29.06 0.744 0.251 164.04 64.5
Ours 29.77 0.762 0.237 159.20 62.1

identity consistency and frame-to-frame temporal consistency
in challenging cases. As a result, in the generated video,
local patterns may either disappear or exhibit inconsistencies
when compared to the reference image. In comparison, Ani-
Feats extracts detailed features from the reference image and
projects them onto meshes to render feature maps that serve
as guidance in the generation process. This approach not only
preserves human identity in the generation but also maintains
temporal consistency in character animation, demonstrating a
superior capability for generating realistic character animation.

D. Ablation Studies on condition maps

To verify the effectiveness of our 3D feature meshes in Ani-
Feats, we conduct ablation studies on the self-collected dataset.
Specifically, we evaluate three configurations: (1) using only

GT w/ SMPL w/ SMPL-X

Fig. 9. Qualitative results of ablation studies on the usage of different
parametric human models. ”w/ SMPL” refers to using the SMPL model, which
has 10 shape parameters and represents only body shape and pose. ”w/ SMPL-
X” means the model includes body, hands, and facial expressiveness with 16
shape parameters.

TABLE III
QUANTITATIVE RESULTS OF ABLATION STUDIES ON THE USAGE

OF DIFFERENT PARAMETRIC HUMAN MODELS.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ MPJPE ↓

SMPL 29.34 0.772 0.228 74.3

SMPL-X 29.63 0.788 0.219 62.1

the pose map as the conditioning input, (2) incorporating both
the pose map and the normal map, which indicates that a 3D
mesh is used as condition, and (3) employing both the pose
map and the feature mesh, which is the setup of our model.

a) Quantitative results.: As summarized in Table II, we
evaluate the impact of different conditioning inputs on genera-
tion quality and video fidelity metrics. Removing the SMPL-X
mesh and using only the pose map as the conditioning input
(w/o Mesh) results in the weakest performance. Incorporating
both the pose map and the normal map (w/o 3D Feature
Map), which introduces the 3D mesh, improves fidelity and
spatial consistency, leading to a 9.06% decrease in LPIPS
and a 9.93% reduction in FVD compared to using only the
pose map. However, the absence of feature maps still limits
overall performance. Our full model (Ours), which employs
both the pose map and the feature mesh, further enhances
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Reference Pose Generated Frames

Fig. 10. Cross-identity reenactment. The first row shows the original image
of a target pose. The following rows show the images of different characters
reenacted to the same target pose (right-bottom is the reference image of the
identity).

consistency, improving generation quality while achieving a
14.13% decrease in LPIPS and a 12.59% reduction in FVD.
These results demonstrate that incorporating feature meshes
not only improves spatial accuracy but also strengthens tem-
poral coherence, leading to more realistic and stable video
generation.

b) Qualitative Results: As shown in Figure 8, using only
the pose map fails to maintain appearance consistency, leading
to missing patterns on clothing. Similarly, relying solely on the
3D mesh and pose without feature maps results in incomplete
texture reconstruction, as the model lacks sufficient appearance
guidance. When incorporating feature maps from the SMPL-
X mesh as conditioning inputs, the model accurately captures
and transfers patterns from the reference image to the target,
preserving fine details and ensuring temporal consistency in
the generated video.

E. Ablation Studies on parametric Human Models

a) Quantitative results.: To analyze the effect of different
parametric human models, we compare SMPL and SMPL-
X as the underlying 3D representations in our framework.
As shown in Table III, using SMPL-X consistently improves
generation quality in multiple evaluation metrics. Specifically,
using SMPL-X instead of SMPL results in a 2.07% improve-
ment in SSIM and a 3.95% reduction in LPIPS.

b) Qualitative results: From the qualitative results shown
in Figure 9, using SMPL as the parametric human model leads
to inconsistencies in motion transfer, particularly in articulated
regions such as hands and facial expressions. This results in
noticeable blurring and loss of detail, especially when the
character undergoes complex movements. Additionally, the
lack of expressive facial modeling in SMPL causes discrep-
ancies between the reference image and the generated frames,
reducing overall visual fidelity.

This result can be attributed to SMPL-X’s richer expres-
siveness, which incorporates articulated hands, fingers, and
facial expressions in addition to body shape and pose. These
additional degrees of freedom enable more precise motion

transfer and a better alignment between the generated frames
and the reference character.

F. More Results

a) Cross-identity reenactment: To comprehensively eval-
uate the robustness of AniFeats, we test its cross-identity
reenactment by sampling three motion sequences from the
TikTok dataset to animate different characters. This setup
examines the model’s ability to generalize across identities
and motions while maintaining high-fidelity synthesis. As
shown in Figure 10, our method realistically transfers detailed
appearance attributes from reference images and naturally
adapts to diverse motion dynamics, achieving stable generation
that preserves both temporal consistency and identity fidelity.

b) Temporal Consistency: AniFeats is explicitly designed
to ensure temporal consistency in character animation, preserv-
ing coherent appearance details even under complex and rapid
motions. As illustrated in Figure 11, our method maintains
structural integrity and fine-grained details of the reference
identity by leveraging 3D feature meshes as explicit guidance.
This mitigates common issues in 2D-based generation, such
as flickering, drift, or unnatural warping, enabling smooth and
stable animations with high visual fidelity.

c) 4D Character Video Generation: By leveraging the
3D feature mesh as explicit guidance, AniFeats enables the
generation of dynamic character videos that maintain both
spatial and temporal consistency across frames. As illustrated
in Figure 12, our approach enables synthesizing character
motions while allowing for controlled camera movement. By
adjusting the camera pose relative to the 3D feature mesh,
our method introduces a level of multi-view consistency into
the animation process. However, changing viewpoints on a
dynamically moving human remains a challenging problem, as
motion and appearance must remain coherent across varying
perspectives. Our model takes a step in this direction by incor-
porating 3D-aware representations, offering a more structured
way to handle motion consistency. While traditional methods
primarily rely on 2D cues, our approach suggests the potential
for improving stability in motion reenactment, with possible
applications in virtual avatars, gaming, and immersive content
creation.

d) Robustness to Challenging Cases: We further evaluate
the robustness of our method under scenarios involving view-
points without rendered features, detailed facial expressions,
and loose or non-rigid clothing, as illustrated in Figure 13.
In (a), we examine unrendered-view feature maps, where the
3D feature mesh does not provide explicit texture guidance
for the current viewpoint. In such cases, the corresponding
region in the feature map is set to zero; nevertheless, our
model, aided by auxiliary cues such as DWPose, synthesizes
plausible appearances without introducing temporal inconsis-
tency. Subfigure (b) highlights our ability to preserve high-
quality facial details, benefiting from the use of SMPL-
X, which provides 3,502 dedicated facial vertices and 86
blendshapes, significantly more than the standard SMPL, thus
ensuring accurate facial representation even in close-up or
highly expressive sequences. Subfigures (b) and (c) further
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Reference Image Generated Frames Reference Image Generated Frames

Fig. 11. Qualitative results of our method to demonstrate the temporal consistency. We show two images of the same identity reenacted in two different
poses. The consistency of their cloth patterns and identity demonstrates the effectiveness of AniFeats.

Reference Image Frames Generated by Different Camera Pose

Fig. 12. 4D generation. AniFeats generates 4D character videos from
different viewpoints with a fixed pose.

demonstrate that our approach can faithfully reconstruct loose
or non-rigid clothing and out-of-mesh regions (e.g., hair),
maintaining structural coherence and temporal stability despite
these regions not being explicitly represented in the SMPL-
X mesh. These results collectively indicate that our method
generalizes effectively to challenging conditions, delivering
consistent, high-fidelity animations across diverse viewpoints,
clothing types and appearance details.

e) Limitations: Although AniFeats produces visually
plausible and consistent character videos from motion se-
quences and reference images, it may still encounter chal-
lenges in generating physically accurate animations. In cases
where the estimated mesh is misaligned with the input image,
unprojected features can be mapped to incorrect mesh loca-
tions, resulting in local artifacts such as distorted geometry or
misplaced texture details as shown in Figure 14. A potential
future direction is to incorporate the explicit avatar reconstruc-

tion like recent Gaussian splatting-based avatar reconstruction
methods [1], [17], [27] in the diffusion model for better
generation quality.

V. CONCLUSION

In this paper, we propose AniFeats, a novel framework that
explicitly integrates a 3D body model to enhance temporal
consistency in character animation. AniFeats extracts visual
features from a reference image, projects them onto 3D Fea-
ture Meshes constructed based on SMPL-X, and renders these
feature maps as structured conditions for video generation.
By leveraging the 3D spatial priors, our method establishes
a strong correspondence between the reference appearance
and the generated frames, ensuring coherence in both identity
and motion representation. Extensive experiments demonstrate
that AniFeats achieves superior temporal stability and visual
fidelity, outperforming existing approaches in generating high-
quality, realistic character animations with consistent motion
dynamics.
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[36] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci,
and Nicu Sebe. First order motion model for image animation. Advances
in Neural Information Processing Systems, 32, 2019.

[37] Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, Dandan Zheng,
Ruobing Zheng, Kecheng Zheng, Jingdong Chen, and Ming Yang.
Animate-x: Universal character image animation with enhanced motion
representation. arXiv preprint arXiv:2410.10306, 2024.

[38] Zhengyan Tong, Chao Li, Zhaokang Chen, Bin Wu, and Wenjiang Zhou.
Musepose: a pose-driven image-to-video framework for virtual human
generation. arxiv, 2024.

[39] Chenyang Wang, Zerong Zheng, Tao Yu, Xiaoqian Lv, Bineng Zhong,
Shengping Zhang, and Liqiang Nie. Diffperformer: Iterative learning of
consistent latent guidance for diffusion-based human video generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6169–6179, 2024.

[40] Haimin Wang, Yang Jiang, Linjie Xu, Yue Wang, Xintao Yu, Menglei
Zhao, Chen Change Loy, and Bo Dai. Intrinsicavatar: Physically based
inverse rendering of dynamic humans from monocular videos via explicit
ray tracing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 184–194, 2024.

[41] Qilin Wang, Zhengkai Jiang, Chengming Xu, Jiangning Zhang, Yabiao
Wang, Xinyi Zhang, Yun Cao, Weijian Cao, Chengjie Wang, and Yanwei
Fu. Vividpose: Advancing stable video diffusion for realistic human
image animation. arXiv preprint arXiv:2405.18156, 2024.

[42] Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin,
Zhengyuan Yang, Hanwang Zhang, Zicheng Liu, and Lijuan Wang.
Disco: Disentangled control for referring human dance generation in
real world. arXiv preprint arXiv:2307.00040, 2023.

[43] Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, Xiaoqiang
Zhou, Yingya Zhang, Luxin Yan, and Nong Sang. Unianimate: Taming
unified video diffusion models for consistent human image animation.
arXiv preprint arXiv:2406.01188, 2024.

[44] Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo,
Wenran Liu, Jing Tan, Kai Chen, Tianfan Xue, Bo Dai, et al. Human-
vid: Demystifying training data for camera-controllable human image
animation. arXiv preprint arXiv:2407.17438, 2024.

[45] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, 13(4):600–612, 2004.

[46] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron,
and Ira Kemelmacher-Shlizerman. Humannerf: Free-viewpoint rendering
of moving people from monocular video. In Proceedings of the
IEEE/CVF conference on computer vision and pattern Recognition,
pages 16210–16220, 2022.

[47] Jiawei Wu, Yang Jiang, Min Ye, Song Zhang, Xintao Yu, Menglei Zhao,
Chen Qian, Chen Change Loy, and Bo Dai. Animatable 3d gaussian:
Fast and high-quality reconstruction of multiple human avatars. In ACM
SIGGRAPH 2024 Conference Proceedings, pages 1–12. ACM, 2024.

[48] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular total capture:
Posing face, body, and hands in the wild. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[49] Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael J
Black. Econ: Explicit clothed humans optimized via normal integration.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 512–523, 2023.

[50] Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J Black.
Icon: Implicit clothed humans obtained from normals. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13286–13296. IEEE, 2022.

[51] Zhiqiang Xu, Xinyu Li, Jian Wang, Zhong Zheng, Lizhen Ma, Xu Chen,
Chen Change Loy, and Xiaokang Yang. Tech: Text-guided reconstruc-

tion of lifelike clothed humans. In 2024 International Conference on
3D Vision (3DV), pages 152–162. IEEE, 2024.

[52] Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei
Liu, Chenxu Zhang, Jiashi Feng, and Mike Zheng Shou. Magicanimate:
Temporally consistent human image animation using diffusion model.
arXiv preprint arXiv:2311.16498, 2023.

[53] Jingyun Xue, Hongfa Wang, Qi Tian, Yue Ma, Andong Wang, Zhiyuan
Zhao, Shaobo Min, Wenzhe Zhao, Kaihao Zhang, Heung-Yeung Shum,
et al. Follow-your-pose v2: Multiple-condition guided character image
animation for stable pose control. arXiv preprint arXiv:2406.03035,
2024.

[54] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang,
Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu
Feng, et al. Cogvideox: Text-to-video diffusion models with an expert
transformer. arXiv preprint arXiv:2408.06072, 2024.

[55] Jae Shin Yoon, Lingjie Liu, Vladislav Golyanik, Kripasindhu Sarkar,
Hyun Soo Park, and Christian Theobalt. Pose-guided human animation
from a single image in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[56] Hongwen Zhang, Yating Tian, Yuxiang Zhang, Mengcheng Li, Liang
An, Zhenan Sun, and Yebin Liu. Pymaf-x: Towards well-aligned
full-body model regression from monocular images. arXiv preprint
arXiv:2207.06400, 2022.

[57] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu,
Limin Wang, and Zhenan Sun. Pymaf: 3d human pose and shape
regression with pyramidal mesh alignment feedback loop. In IEEE
International Conference on Computer Vision, 2021.

[58] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023.

[59] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang. The unreasonable effectiveness of deep features as a perceptual
metric. In CVPR, 2018.

[60] Hao Zhu, Xinxin Zuo, Sen Wang, Xun Cao, and Ruigang Yang. Detailed
human shape estimation from a single image by hierarchical mesh
deformation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[61] Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Qingkun Su, Yinghui
Xu, Xun Cao, Yao Yao, Hao Zhu, and Siyu Zhu. Champ: Controllable
and consistent human image animation with 3d parametric guidance.
arXiv preprint arXiv:2403.14781, 2024.

Beijia Lu is currently a master student at Carnegie
Mellon University, supervised by Prof. Jun-Yan Zhu.
She received her B.S. degree in Mathematics from
City University of Hong Kong in 2024. Her research
interests lie in computer graphics and computer
vision.

Zekai Gu is a research assistant at Hong Kong Uni-
versity of Science and Technology advised by Prof.
Yuan Liu. He received a master’s degree from the
National University of Singapore advised by Prof.
Marcelo H Ang Jr. His research interest includes
Generative AI and 3D computer vision.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Zhiyang Dou is an MPhil student in Computer
Graphics Group at The University of Hong Kong,
supervised by Prof. Wenping Wang and Prof. Taku
Komura. He received the B. Eng. degree with honors
at Shandong University, advised by Prof. Shiqing
Xin. His research interest lies in Character Anima-
tion, Geometric Modeling and Processing, Simula-
tion, Computer Graphics.

Haotian Yuan is currently pursuing a Bachelor
of Engineering degree in Computer Science at the
Institute for Interdisciplinary Information Sciences,
Tsinghua University. His research interests include
3d computer vision and robotics.

Peng Li is a Ph.D student at HKUST advised by
Yike Guo and Wenhan Lou. He received a M.S
degree from Tsinghua University in 2023, and a
B.S. degree from Xidian University, China, in 2020.
His research interest includes depth estimation, 3D
reconstruction and generation.

Chenyang Si is an Assistant Professor in School
of Intelligence Science and Technology at Nanjing
University. He was a research fellow at Nanyang
Technological University, Singapore, working with
Prof. Ziwei Liu. Prior to this, he worked as a
Research Scientist at the Sea AI Lab of Sea Group.
He completed Ph.D. degree in 2021 at CASIA,
supervised by Prof. Tieniu Tan, co-supervised by
Prof. Liang Wang and Prof. Wei Wang.

Yukang Cao is a Postdoctoral Research Fellow
at Nanyang Technological University, Singapore,
working with Prof. Ziwei Liu. Prior to this, he
obtained his Ph.D. degree in the Department of
Computer Science, The University of Hong Kong
advised by Prof. Kwan-Yee K. Wong, and received
his B.Eng from Zhejiang University in 2020.

Yuming Jiang is currently a Research Scientist at
Alibaba DAMO Academy. He obtained the Ph.D.
degree from Nanyang Technological University, Sin-
gapore, supervised by Prof. Ziwei Liu and Prof.
Chen Change Loy. He got the bachelor degree in
computer science from Yingcai Honors College,
University of Electronic Science and Technology of
China.

Yuan Liu is an Assistant Professor in the Division
of Integrated Systems Design at the Hong Kong
University of Science and Technology. He did his
PostDoc at Nanyang Technological University, Sin-
gapore under the supervision of Prof. Ziwei Liu. He
obtained his PhD degree at the University of Hong
Kong advised by Prof. Wenping Wang. Prior to that,
he obtained both his Master’s and Bachelor’s degrees
from Wuhan University.

Wenping Wang is a Professor of Computer Science
& Engineering at Texas A&M University. His re-
search interests include computer graphics, computer
visualization, computer vision, robotics, medical im-
age processing, and geometric computing. He has
published over 300 technical papers in these fields.
He is journal associate editor of Computer Aided
Geometric Design (CAGD) and IEEE Transactions
on Visualization and Computer Graphics, and has
chaired a number of international conferences, in-
cluding Pacific Graphics 2012, ACM Symposium

on Physical and Solid Modeling (SPM) 2013, SIGGRAPH Asia 2013, and
Geometry Summit 2019. He received the John Gregory Memorial Award for
his contributions in geometric modeling. He is an ACM Fellow and IEEE
Fellow.

Ziwei Liu is an Associate Professor at College of
Computing and Data Science in Nanyang Techno-
logical University, Singapore. Previously, he was a
research fellow in Chinese University of Hong Kong
with Prof. Dahua Lin and a post-doc researcher in
University of California, Berkeley with Prof. Stella
Yu. He is the recipient of PAMI Mark Everingham
Prize, MIT TR Innovators under 35 Asia Pacific,
ICBS Frontiers of Science Award, CVPR Best Paper
Award Candidate and Asian Young Scientist Fellow-
ship.


	Introduction
	Related Work
	Image-guided 2D human animation
	Animatable 3D Human Reconstruction from Images
	Parametric 3D human model

	Method
	Overview
	Pose Conditioned Diffusion
	Feature Mesh Extraction
	Training

	Experiments
	Implementation Details
	Experimental Settings
	Comparisons
	Ablation Studies on condition maps
	Ablation Studies on parametric Human Models
	More Results

	Conclusion
	References
	Biographies
	Beijia Lu
	Zekai Gu
	Zhiyang Dou
	Haotian Yuan
	Peng Li
	Chenyang Si
	Yukang Cao
	Yuming Jiang
	Yuan Liu
	Wenping Wang
	Ziwei Liu


